III. COMPLEX NUMBERS

A. Root of Negative One

<u>Def.</u>: imaginary unit i with $i^2 = -1$ as symbolic solution to $x^2 = -1$ generalizes to <u>complex</u> numbers \mathbb{C} : z = a + ib, $a, b \in \mathbb{R}$ with *ib* understood as an (ordinary) product, hence $x^2 = -1$ implies $x = \pm i$ $a = \operatorname{Re}(z)$: real part; $b = \operatorname{Im}(z)$: imaginary part $\longrightarrow \mathbb{C} \sim \mathbb{R} \times \mathbb{R}$ complex numbers are indeed real objects (nothing imaginary out of this world)

we will observe that no further extension is needed to, e.g. solve $(x^2)^2 = -1$

B. Calculational Methods

<u>addition</u> of complex numbers, z_1, z_2

$$z_1 + z_2 = (a_1 + ib_1) + (a_2 + ib_2)$$
$$= (a_1 + a_2) + i(b_1 + b_2) = a + ib \in \mathbb{C}$$

just add real and imaginary parts separately similar to vector addition when pictured in a plane with real and imaginary parts

neutral element: $0: a_2 = 0, b_2 = 0$ inverse element: $a_2 = -a_1, b_2 = -b_1$ —

multiplication of complex numbers, z_1, z_2

treat ib like the product $i \cdot b$ with $i^2 = -1$

$$z_1 z_2 = (a_1 + ib_1)(a_2 + ib_2) = a_1 a_2 + ia_1 b_2 + ib_1 a_2 + i^2 b_1 b_2 = a_1 a_2 - b_1 b_2 + i(a_1 b_2 + a_2 b_1)$$

$$\implies \mathsf{Re}(z_1 z_2) = a_1 a_2 - b_1 b_2, \qquad \mathsf{Im}(z_1 z_2) = a_1 b_2 + a_2 b_1 \qquad \text{and} \qquad z_1 z_2 \in \mathbb{C}$$

 $z_1 + z_2 = z_1$

 $(a_2, b_2$

 (a_1, b_1)

 $z_1 + z_2 = 0$ (neutral element)

 $a = \operatorname{Re}(z)$

in particular $i \cdot i$ has $a_{1,2} = 0$ and $b_{1,2} = 1$ so that $\operatorname{Re}(i \cdot i) = -1$ and $\operatorname{Im}(i \cdot i) = 0$ \checkmark neutral element: $1: a_2 = 1, b_2 = 0 \longrightarrow z_1 z_2 = a_1 + ib_1 = z_1$ inverse element: $z_1 z_2 = 1$ except for $z_1 = 0$ (distributivity requires $z \cdot 0 = 0 \neq 1$) (recall distributivity: $zz_1 - zz_2 = z(z_1 - z_2)$ both must be zero when $z_1 = z_2$) two conditions: $a_1 a_2 - b_1 b_2 = 1$ and $a_1 b_2 + a_2 b_1 = 0, a_1$ and b_1 are not both zero

(i) $a_1 \neq 0$ but b_1 can be any real number $\implies b_2 = -\frac{a_2}{a_1}b_1$ $\implies a_1a_2 + \frac{a_2}{a_1}b_1^2 = 1 \implies a_2 = \frac{a_1}{a_1^2 + b_1^2}$ and $b_2 = \frac{-b_1}{a_1^2 + b_1^2}$ $a_1 + a_2, b_1 + b_2$

(ii)
$$b_1 \neq 0$$
 but a_1 can be any real number $\implies a_2 = -\frac{b_2}{b_1}a_1$
 $\implies -a_1^2 \frac{b_2}{b_1} - b_1 b_2 = 1 \implies b_2 = -\frac{b_1}{a_1^2 + b_1^2}$ and $a_2 = \frac{a_1}{a_1^2 + b_1^2}$

both cases:

$$(a_1 + ib_1) \left(\frac{a_1}{a_1^2 + b_1^2} - i \frac{b_1}{a_1^2 + b_1^2} \right) = 1$$

 $\label{eq:mathematical language:} \quad \{\mathbb{C}=\mathbb{R}\times\,\mathbb{R},\,"+",\,"\cdot"\} \quad \text{is a field}$

C. Polar Decomposition

graphical representation of a complex number z = a + ib in a plane:

works as if
$$i = \sqrt{-1}$$
 and $\sqrt{\left(\frac{p}{2}\right)^2 - q} = \sqrt{-1}\sqrt{\left|\left(\frac{p}{2}\right)^2 - q\right|}$
by accident because *p*-*q* formula contains both signs

problems with the square root and complex numbers

- *a* and *b* real and positive: $\sqrt{ab} = \sqrt{a}\sqrt{b}$ does <u>not</u> generalize: $1 = \sqrt{1} = \sqrt{(-1)(-1)} = \sqrt{-1}\sqrt{-1} = i^2 = -1$?
- mathematica, for example: $\sqrt{-1 + i\epsilon} = i$ while $\sqrt{-1 i\epsilon} = -i$ for $\epsilon \longrightarrow 0^+$
- $\sqrt[n]{x} = x^{\frac{1}{n}}$ related to $y = x^{\frac{1}{n}} \implies \ln(y) = \frac{1}{n}\ln(x)$ need fractional power (or logarithm) of complex numbers

key to these questions: <u>Euler formula</u> for exponential function of imaginary number

$$e^{ix} = \cos(x) + i\sin(x)$$
 $x \in \mathbb{R}$

(compare with
$$e^x = \cosh(x) + \sinh(x)$$
)

derivation/motivation

- any complex number has a polar decomposition: $e^{ix} = r [\cos(\theta) + i \sin(\theta)]$
- derivative of lhs (treat i just as a constant factor; cf. rules above)

$$\frac{d}{dx}e^{ix} = e^{ix}\frac{d}{dx}(ix) = ie^{ix} = r\left[i\cos(\theta) - \sin(\theta)\right]$$

• derivative of rhs

$$\frac{dr}{dx}\left[\cos(\theta) + i\sin(\theta)\right] + r\left[-\sin(\theta) + i\cos(\theta)\right]\frac{d\theta}{dx}$$

• comparison: $\frac{dr}{dx} = 0$ and $\frac{d\theta}{dx} = 1 \implies r = c_1$ and $\theta = x + c_2$; $c_{1,2} \in \mathbb{R}$ x = 0: $1 = c_1 [\cos(c_2) + i\sin(c_2)] \implies c_1 = 1$ and $c_2 = 0$

(equations for complex numbers relate to two real equations, one for real and imaginary parts each)

alternative derivation: Taylor series reformulation of polar decomposition:

$$z = \rho \left[\cos(\varphi) + i \sin(\varphi) \right] = \rho e^{i\varphi}$$

• logarithm: $\ln(z) = \ln(\rho) + i\varphi$ is well defined complex number for $\rho > 0$ (particular case $\rho = 0$ is singular just as it is for real numbers)

logarithm is not unique: $\varphi, \varphi + 2\pi, \varphi + 4\pi, \dots$ have same z but different $\ln(z)$! • roots and/or inverse powers: $z = \rho e^{i(\varphi + 2\pi k)}, \qquad k = 0, 1, 2, \dots$

$$z^{\frac{1}{n}} = \left[\rho \mathrm{e}^{\mathrm{i}(\varphi+2\pi k)}\right]^{\frac{1}{n}} = \sqrt[n]{\rho} \mathrm{e}^{\mathrm{i}\frac{\varphi}{n}} \mathrm{e}^{2\pi \mathrm{i}\frac{k}{n}}$$

<u>different</u> results for $k = 0, 1, ..., n - 1 \implies n$ solutions to $z^n = c \quad (\neq 0)$ (k = n corresponds to k = 0, k = n + 1 to k = 1, etc.) \checkmark

example: $z^{3} = 1$, z = 1 is trivial $1 = e^{i0}$, $e^{2\pi i}$, $e^{4\pi i}$ $\rightarrow e^{i0/3}$, $e^{2\pi i/3}$, $e^{4\pi i/3}$ = 1, $-\frac{1}{2}(1-\sqrt{3}i)$, $-\frac{1}{2}(1+\sqrt{3}i)$ check: $\left[-\frac{1}{2}(1-\sqrt{3}i)\right]^{3} = -\frac{1}{8}(1-\sqrt{3}i)^{2}(1-\sqrt{3}i) = -\frac{1}{8}(1-3-2\sqrt{3}i)(1-\sqrt{3}i)$ $= \frac{1}{4}(1+\sqrt{3}i)(1-\sqrt{3}i) = \frac{1}{4}(1+3) = 1$

• root of -1 (convention with $\varphi \in [-\pi, \pi]$)

$$-1 + i\epsilon = 1e^{i\pi} \implies \sqrt{-1 + i\epsilon} = e^{i\pi/2} = i$$
$$-1 - i\epsilon = 1e^{-i\pi} \implies \sqrt{-1 + i\epsilon} = e^{-i\pi/2} = -i$$

discontinuity cannot be avoided:

for $\varphi \in [0, 2\pi]$ it occurs along the positive real axis with $\sqrt{1}$ jumping between +1 and -1

addition theorem

$$e^{i\varphi_1}e^{i\varphi_2} = [\cos(\varphi_1) + i\sin(\varphi_1)][\cos(\varphi_2) + i\sin(\varphi_2)]$$
$$= \cos(\varphi_1)\cos(\varphi_2) - \sin(\varphi_1)\sin(\varphi_2) + i[\sin(\varphi_1)\cos(\varphi_2) + \cos(\varphi_1)\sin(\varphi_2)]$$
$$= \cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2) = e^{i(\varphi_1 + \varphi_2)} \quad \text{phases add in the product}$$

analytic continuation, examples with $x \in \mathbb{R}$

$$\cosh(ix) = \frac{1}{2} (e^{ix} + e^{-ix}) = \cos(x)$$

$$\sinh(ix) = \frac{1}{2} (e^{ix} - e^{-ix}) = \frac{1}{2} (\cos(x) + i\sin(x) - \cos(x) + i\sin(x)) = i\sin(x)$$

IV. INTRODUCTION TO ANALYTIC FUNCTION THEORY

Def.: a holomorphic function depends on one or more complex variables:

$$f = f(z_1, z_2, \ldots)$$
 (not $f(z_1, z_1^*, \ldots)$)

restricts combination on real and imaginary part of z = x + iy, e.g. $z^2 = x^2 - y^2 + 2ixy$ f is complex differentiable in a domain $\subset \mathbb{C}^n$

for an *entire function* the domain is the entire complex plane

Def.: an analytic function is locally described by a converging power series

e.g. $f(z) = \sum_{i=0} c_i z^i$ for $|z| < z_0$, z_0 is the radius of convergence, may be infinite

separate real and imaginary parts

$$f(z) = u(x, y) + iv(x, y)$$

though f is a function of z, u and v are not separately functions of z e.g. $f(z) = z^2 = x^2 - y^2 + 2ixy \implies u(x,y) = x^2 - y^2$ and v(x,y) = 2xy

A. Cauchy-Riemann relations

derivative of a holomorphic function: $f'(z) = \frac{df(z)}{dz} = \lim_{z_0 \to z} \frac{f(z) - f(z_0)}{z - z_0}$ approaching z from different directions in the complex plane must produce identical results recall real function: $g'(x) = \lim_{h \to 0^+} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0^-} \frac{g(x+h) - g(x)}{h}$

i) along the real axis: $z_0 = z + h$ with $h \in \mathbb{R}$

$$f'(z) = \lim_{h \to 0} \frac{f(z) - f(z+h)}{-h}$$

=
$$\lim_{h \to 0} \frac{u(x,y) + iv(x,y) - u(x+h,y) - iv(x+h,y)}{-h} = u_x(x,y) + iv_x(x,y)$$

where $u_x(x,y) = \frac{\partial u(x,y)}{\partial x}$ etc.

ii) along the imaginary axis: $z_0 = z + ih$ with $h \in \mathbb{R}$

$$f'(z) = \lim_{h \to 0} \frac{f(z) - f(z + ih)}{-ih}$$

=
$$\lim_{h \to 0} \frac{u(x, y) + iv(x, y) - u(x, y + h) - iv(x, y + h)}{-ih} = -iu_y(x, y) + v_y(x, y)$$

equating i) and ii) \implies Cauchy-Riemann relations:

$$u_x(x,y) = v_y(x,y)$$
 and $u_y(x,y) = -v_x(x,y)$

e.g. $f(z) = z^2 = x^2 - y^2 + 2ixy$ has $u = x^2 - y^2$ and v = 2xyhas $u_x = 2x$, $v_y = 2x$, $u_y = -2y$, $v_x = 2y$

interesting consequence

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u_x}{\partial x} = \frac{\partial v_y}{\partial x} = \frac{\partial v_x}{\partial y} = -\frac{\partial u_y}{\partial y} = -\frac{\partial^2 u}{\partial y^2}$$

real part of an analytic function solves Laplace's equation in two dimensions $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$ so does the imaginary part closed counter x_0 and y_0 ar

with $-x_0 < \tilde{x} < x_0$ and $-y_0 < \tilde{y} < y_0$ by the central value theorem of integration take the infinitesimal limit $x_0 \to 0$ and $y_0 \to 0$, *i.e.* $\tilde{x} \to 0$ and $\tilde{y} \to 0$:

$$\oint_{\mathcal{C}} dz f(z) \longrightarrow 4x_0 y_0 \left[-u_y(0,0) - iv_y(0,0) + iu_x(0,0) - v_x(0,0) \right] = 0$$

by the Cauchy-Riemann relations⁸

patch finite area by (infinitely) many infinitesimal loops

contributions from internal lines to $\oint_{\mathcal{C}} dz \, f(z)$ cancel conclusion: $\oint_{\mathcal{C}} dz f(z) = 0$ if the central value theorem can be applied $(a, z_0 \in \mathbb{C})?$ what happens for a singular structure like $f(z) = \frac{a}{z-z_0}$ notation: z_0 is the pole (position) and a is the residue let $\mathcal{C} = \partial \mathcal{A}$ (boundary of an area)

y

 (x_0, y_0)

 $(-x_0, y_0)$

⁸ Calculation essentially is Stokes's theorem with $d\mathbf{r} = dx\mathbf{e}_x + dy\mathbf{e}_y$ and $\mathbf{V} = [u(x,y) + iv(x,y)][\mathbf{e}_x + i\mathbf{e}_y]$.

i) $z_0 \notin \mathcal{A} \implies$ central value theorem applies $\implies \oint_{\mathcal{C}} dz f(z) = 0$

ii) $z_0 \in \mathcal{A}$ counter-clockwise circle (fixed radius R) around pole

$$\begin{aligned} \mathcal{C} : \quad z &= z_0 + R \mathrm{e}^{\mathrm{i}\varphi} & 0 \leq \varphi < 2\pi \\ dz &= \mathrm{i} R \mathrm{e}^{\mathrm{i}\varphi} \, d\varphi & \implies \qquad \oint_{\mathcal{C}} dz \, f(z) = \mathrm{i} R a \int_0^{2\pi} d\varphi \, \frac{\mathrm{e}^{\mathrm{i}\varphi}}{R \mathrm{e}^{\mathrm{i}\varphi}} = 2\pi \mathrm{i} a \end{aligned}$$

independent of radius

separate pole for an arbitrary contour

a closed counter-clockwise contour integral that encircles a (first order) pole yields $2\pi i \times$ (residue of that pole); clockwise contour has the negative thereof

iii) multiple poles: $f(z) = \frac{a_1}{z-z_1} + \frac{a_2}{z-z_2}$, $z_1 \neq z_2$ patch contours encircling individual poles

$$\begin{array}{c} & \times \\ & z_2 \\ \times \\ & z_1 \end{array} \end{array} = \begin{array}{c} & \times \\ & \times \\ & z_1 \end{array} \end{array} \begin{array}{c} \times \\ & z_2 \\ & & z_1 \end{array} \qquad \oint_{\mathcal{C}} dz \, f(z) = 2\pi \mathrm{i} \sum_i a_i$$

higher order poles: $f(z) = \frac{a}{(z-z_0)^n}$, with integer $n \ge 2$; obviously $\oint_{\mathcal{C}} dz f(z) = 0$ when $z_0 \notin \mathcal{A}$ as above: \mathcal{C} : $z = z_0 + Re^{i\varphi}$

$$\oint_{\mathcal{C}} dz f(z) = iaR \int_0^{2\pi} d\varphi \frac{\mathrm{e}^{\mathrm{i}\varphi}}{R^n \mathrm{e}^{\mathrm{i}n\varphi}} = iaR^{1-n} \int_0^{2\pi} d\varphi \, \mathrm{e}^{\mathrm{i}(n-1)\varphi} = 0 \qquad \text{since} \quad n \neq 1$$

final result for counter-clockwise contour integral:

$$\oint_{\mathcal{C}} dz f(z) = 2\pi i \times (\text{sum of residues of first order poles encircled by } \mathcal{C})$$

Calculational methods

i) f(z) has a first order pole at $z = z_0$

$$a = \operatorname{Res}_{z_0} f(z) = \lim_{z \to z_0} (z - z_0) f(z)$$

ii) f(z) has an m^{th} order pole at $z = z_0$

$$\operatorname{Res}_{z_0} f(z) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} (z - z_0)^m f(z)$$

C. Applications

extend ordinary integrals (along real axis) to closed contour integrals & ensure that extension contributes zero

Examples

it is permissable to multiply ϵ by any positive real number (sign unchanged)

semi-circle extensions contribute zero when the exponential vanishes

on the semi-circles: $z = Re^{i\varphi}$ so that $e^{isz} = e^{isR\cos\varphi} e^{-sR\sin\varphi}$ vanishes for $R \to \infty$ when $s\sin\varphi > 0$, $\overline{\mathcal{C}}_1 : \sin\varphi > 0$, $\overline{\mathcal{C}}_2 : \sin\varphi < 0$ for s > 0 we need to take C_1

$$\theta(s) = \operatorname{Res}_{i\epsilon} \frac{e^{isx}}{x - i\epsilon} = e^{-s\epsilon} \longrightarrow 1 \quad \text{because} \quad \epsilon \to 0^+$$

for s < 0 we need to take C_2 which has $\theta(s) = 0$ result: $\int_{-\infty}^{\infty} \frac{dx}{2\pi i} \frac{e^{isx}}{x - i\epsilon}$ is a parameterization of the step function

derivative of step function (assuming it can be pulled under the integral)

$$\frac{d\theta(s)}{ds} = \int \frac{dx}{2\pi} \frac{x}{x - i\epsilon} e^{isx} = \frac{1}{i} \begin{cases} \operatorname{Res}_{i\epsilon} \frac{x}{x - i\epsilon} e^{isx} = i\epsilon e^{-s\epsilon} = 0 & s > 0 \\ \text{undetermined} & s = 0 \\ 0 & s < 0 \end{cases}$$

test function g(s) and integration bounds a < 0 < b

$$\int_{a}^{b} ds \, g(s) \frac{d\theta(s)}{ds} = [g(s)\theta(s)]_{a}^{b} - \int_{a}^{b} ds \, \frac{dg(s)}{ds}\theta(s) = g(b) - \int_{0}^{b} ds \, \frac{dg(s)}{ds} = g(0)$$

hence $\frac{d\theta(s)}{ds} = \delta(s)$, the Dirac- δ function (distribution) since the residue above is zero, we may omit the i ϵ prescription and write

$$\delta(s) = \int \frac{dx}{2\pi} e^{isx} \qquad (\text{consistent with Fourier transform:} \quad g(x) = \int \frac{dk}{2\pi} \int dx' g(x') e^{i(x-x')k})$$

C) $S(t) = \int \frac{dx}{2\pi} \frac{e^{ixt}}{x^2 - m^2 + i\epsilon}$ has first order poles at $x = \pm \sqrt{m^2 - i\epsilon} \approx \pm \left(m - \frac{i\epsilon}{2m}\right) \rightarrow \pm m \mp i\epsilon$

$$S(t) = i\theta(t)\operatorname{Res}_{-m}\frac{e^{ixt}}{x^2 - m^2} - i\theta(-t)\operatorname{Res}_{m}\frac{e^{ixt}}{x^2 - m^2} = \frac{-i}{2m}\left[\theta(t)e^{-imt} + \theta(-t)e^{imt}\right] = \frac{-i}{2m}e^{-im|t|}$$

consider

$$\left(-\frac{d^2}{dt^2} - m^2\right)S(t) = \frac{1}{2}\frac{d}{dt}\left[e^{-im|t|}\operatorname{sgn}(t)\right] + \frac{im}{2}e^{-im|t|} = \frac{1}{2}e^{-im|t|}\frac{d}{dt}\left[\theta(t) - \theta(-t)\right] = \delta(t)$$

on the other hand

$$\left(-\frac{d^2}{dt^2} - m^2\right)S(t)\int \frac{dx}{2\pi} \frac{\mathrm{e}^{\mathrm{i}xt}}{x^2 - m^2 + \mathrm{i}\epsilon} = \int \frac{dx}{2\pi} \frac{x^2 - m^2}{x^2 - m^2 + \mathrm{i}\epsilon} \mathrm{e}^{\mathrm{i}xt} \longrightarrow \int \frac{dx}{2\pi} \,\mathrm{e}^{\mathrm{i}xt} = \delta(t)$$

physics application: time-ordered product, Feynman propagator

branch cut singularities
$$(\epsilon = 0^+, x > 0)$$

 $\ln(-x + i\epsilon) - \ln(-x - i\epsilon) = 2\pi i \ln(x)$
 $\sqrt{z} = e^{\ln(\sqrt{z})} = e^{\frac{1}{2}\ln(z)}$
 $\sqrt{-x + i\epsilon} - \sqrt{-x - i\epsilon} = \sqrt{x} \left(\sqrt{e^{i\pi}} - \sqrt{e^{-i\pi}}\right)$
 $= \sqrt{x} \left(e^{i\pi/2} - e^{-i\pi/2}\right) = \sqrt{x} (i - (-i)) = 2\pi i \sqrt{x}$

can be used to express an integral along real axis as an integral along the imaginary axis e.g.: $\int_0^\infty dx \frac{\cos(x)}{\sqrt{x^2+1}} = \frac{1}{2} \int_{-\infty}^\infty dx \frac{e^{ix}}{\sqrt{x^2+1}} = \int_1^\infty dx \frac{e^{-x}}{\sqrt{x^2-1}}$

