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III. COMPLEX NUMBERS

previous DEQ: y′′ = y had simple solution y ∝ eαx with α = ±1

what about DEQ: y′′ = −y? only simple sign change! but α2 = −1 has not real solution.

A. Root of Negative One

Def.: imaginary unit i with i2 = −1 as symbolic solution to x2 = −1

generalizes to complex numbers C : z = a+ ib , a, b ∈ R

with ib understood as an (ordinary) product, hence x2 = −1 implies x = ±i

a = Re(z): real part; b = Im(z): imaginary part −→ C ∼ R× R

complex numbers are indeed real objects (nothing imaginary out of this world)

we will observe that no further extension is needed to, e.g. solve (x2)2 = −1

B. Calculational Methods

addition of complex numbers, z1, z2

z1 + z2 = (a1 + ib1) + (a2 + ib2)

= (a1 + a2) + i(b1 + b2) = a+ ib ∈ C

just add real and imaginary parts separately

similar to vector addition when pictured in

a plane with real and imaginary parts
✲

a = Re(z)

✻

b
=

Im
(z
)

✘✘✘✘✘✘✘✿
(a1, b1)✁

✁
✁
✁
✁
✁
✁
✁
✁✁✕

(a2, b2)

✁
✁
✁
✁
✁
✁
✁
✁
✁✁✕

�
�

�
�

�
�
�

�
�
�
�✒(a1 + a2, b1 + b2)

neutral element: 0 : a2 = 0 , b2 = 0 −→ z1 + z2 = z1
inverse element: a2 = −a1 , b2 = −b1 −→ z1 + z2 = 0 (neutral element)

multiplication of complex numbers, z1, z2

treat ib like the product i · b with i2 = −1

z1z2 = (a1 + ib1)(a2 + ib2) = a1a2 + ia1b2 + ib1a2 + i2b1b2 = a1a2 − b1b2 + i(a1b2 + a2b1)

=⇒ Re(z1z2) = a1a2 − b1b2 , Im(z1z2) = a1b2 + a2b1 and z1z2 ∈ C

in particular i · i has a1,2 = 0 and b1,2 = 1 so that Re(i · i) = −1 and Im(i · i) = 0 X

neutral element: 1 : a2 = 1 , b2 = 0 −→ z1z2 = a1 + ib1 = z1

inverse element: z1z2 = 1 except for z1 = 0 (distributivity requires z · 0 = 0 6= 1)

(recall distributivity: zz1 − zz2 = z(z1 − z2) both must be zero when z1 = z2)

two conditions: a1a2 − b1b2 = 1 and a1b2 + a2b1 = 0, a1 and b1 are not both zero

(i) a1 6= 0 but b1 can be any real number =⇒ b2 = −a2
a1
b1

=⇒ a1a2 +
a2
a1
b21 = 1 =⇒ a2 =

a1
a21+b21

and b2 =
−b1

a21+b21
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(ii) b1 6= 0 but a1 can be any real number =⇒ a2 = − b2
b1
a1

=⇒ −a21
b2
b1

− b1b2 = 1 =⇒ b2 = − b1
a21+b21

and a2 =
a1

a21+b21

both cases:
(a1 + ib1)

(
a1

a21 + b21
− i

b1
a21 + b21

)
= 1

mathematical language: {C = R× R, ” + ”, ” · ”} is a field

C. Polar Decomposition

graphical representation of a complex number z = a+ ib in a plane:

✲
Re(z)

✻

Im
(z
)

✟✟✟✟✟✟✟✟✟✟✟✟✟✯ (a, b)

ϕ
ρ =

√ a
2 + b2

b
=

ρ
sin

(ϕ
)

a = ρ cos(ϕ)

modulus (absolute value): ρ = |z| =
√
a2 + b2

phase: ϕ with a = ρ cos(ϕ) and b = ρ sin(ϕ)

ϕ ∈ [0, 2π] or [−π, π] (matter of convention)

ϕ not defined for z = 0

näıvely: b
a = tan(ϕ) =⇒ ϕ = arctan

(
b
a

)

but: (i) z = 1 + i has
b

a
= 1 and ϕ =

π

4

(ii) z = −1− i has
b

a
= 1 and ϕ =

π

4

(
should be 5π

4 or −3π
4

)

further specification: b > 0 : ϕ ∈ [0, π] and b < 0 : ϕ ∈ [π, 2π] or [−π, 0]

b = 0 : a > 0 has ϕ = 0 while a < 0 has ϕ = ±π

Def. complex conjugation: z −→ z∗ (or z)

a+ ib −→ a− ib (swap sign of imaginary part)
consider

zz∗ = (a+ ib) (a− ib) = a2 + b2 = ρ2 = |z|2 is real

and

1

z
=

z∗

zz∗
=

z∗

|z|2 =
a− ib

a2 + b2
X straightforward: (z1z2)

∗ = z∗1z
∗
2

quadratic equation: z2 = −1 = i2 =⇒ z1,2 = ±i

generally: z2 + pz + qz = 0 (take p and q real):
(
z + p

2

)2
=

(p
2

)2 − q

(i)
(p
2

)2 ≥ q: proceed as in R

(ii)
(p
2

)2
< q:

(p
2

)2 − q = −
∣∣∣q −

(p
2

)2∣∣∣ = i2
∣∣∣q −

(p
2

)2∣∣∣ z1,2 = −p
2 ± i

√∣∣∣q −
(p
2

)2∣∣∣

works as if i =
√
−1 and

√(p
2

)2 − q =
√
−1

√∣∣∣
(p
2

)2 − q
∣∣∣

by accident because p-q formula contains both signs

problems with the square root and complex numbers
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• a and b real and positive:
√
ab =

√
a
√
b

does not generalize: 1 =
√
1 =

√
(−1)(−1) =

√
−1

√
−1 = i2 = −1 ?

• mathematica, for example:
√
−1 + iǫ = i while

√
−1− iǫ = −i for ǫ −→ 0+

• n
√
x = x

1
n related to y = x

1
n =⇒ ln(y) = 1

n ln(x)

need fractional power (or logarithm) of complex numbers

key to these questions: Euler formula for exponential function of imaginary number

eix = cos(x) + i sin(x) x ∈ R

(compare with ex = cosh(x) + sinh(x))

derivation/motivation

• any complex number has a polar decomposition: eix = r [cos(θ) + i sin(θ)]

• derivative of lhs (treat i just as a constant factor; cf. rules above)

d

dx
eix = eix

d

dx
(ix) = ieix = r [i cos(θ)− sin(θ)]

• derivative of rhs

dr

dx
[cos(θ) + i sin(θ)] + r [− sin(θ) + i cos(θ)]

dθ

dx

• comparison: dr
dx = 0 and dθ

dx = 1 =⇒ r = c1 and θ = x+ c2; c1,2 ∈ R

x = 0 : 1 = c1 [cos(c2) + i sin(c2)] =⇒ c1 = 1 and c2 = 0 X

(equations for complex numbers relate to two real equations, one for real and imaginary parts each)

alternative derivation: Taylor series (later)

reformulation of polar decomposition:

z = ρ [cos(ϕ) + i sin(ϕ)] = ρeiϕ

• logarithm: ln(z) = ln(ρ) + iϕ is well defined complex number for ρ > 0

(particular case ρ = 0 is singular just as it is for real numbers)

logarithm is not unique: ϕ, ϕ+ 2π, ϕ+ 4π, . . . have same z but different ln(z)!

• roots and/or inverse powers: z = ρei(ϕ+2πk) , k = 0, 1, 2, . . .

z
1
n =

[
ρei(ϕ+2πk)

] 1
n
= n

√
ρ ei

ϕ

n e2πi
k
n

different results for k = 0, 1, . . . , n− 1 =⇒ n solutions to zn = c
(
6= 0

)

(k = n corresponds to k = 0, k = n+ 1 to k = 1, etc.)
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example: z3 = 1 , z = 1 is trivial

1 = ei0 , e2πi , e4πi

−→ ei0/3 , e2πi/3 , e4πi/3

= 1 , −1

2

(
1−

√
3 i
)
, −1

2

(
1 +

√
3 i
)

✲
Re(z)

✻Im
(z
)

✉

✉

✉

120°

120°

120°

check :

[
−1

2

(
1−

√
3 i
)]3

= −1

8

(
1−

√
3 i
)2 (

1−
√
3 i
)
= −1

8

(
1− 3− 2

√
3 i
)(

1−
√
3 i
)

=
1

4

(
1 +

√
3 i
)(

1−
√
3 i
)
=

1

4
(1 + 3) = 1

• root of −1 (convention with ϕ ∈ [−π, π])

−1 + iǫ = 1eiπ =⇒
√
−1 + iǫ = eiπ/2 = i

−1− iǫ = 1e−iπ =⇒
√
−1 + iǫ = e−iπ/2 = −i

discontinuity cannot be avoided:

for ϕ ∈ [0, 2π] it occurs along the positive real axis with
√
1 jumping between +1 and −1

addition theorem

eiϕ1eiϕ2 = [cos(ϕ1) + i sin(ϕ1)] [cos(ϕ2) + i sin(ϕ2)]

= cos(ϕ1) cos(ϕ2)− sin(ϕ1) sin(ϕ2) + i [sin(ϕ1) cos(ϕ2) + cos(ϕ1) sin(ϕ2)]

= cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2) = ei(ϕ1+ϕ2) phases add in the product

analytic continuation, examples with x ∈ R

cosh(ix) =
1

2

(
eix + e−ix

)
= cos(x)

sinh(ix) =
1

2

(
eix − e−ix

)
=

1

2
(cos(x) + i sin(x)− cos(x) + i sin(x)) = i sin(x)

D. Relevance for Eigenvalues

scalar product for vectors with n complex components

scalar product of vector with itself should give length squared (real and non-negative)

with zero imaginary parts, the scalar product of chapter I should be recovered

v ·w =
n∑

i=1

v∗iwi vi , wi ∈ C

Herbert Weigel
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IV. INTRODUCTION TO ANALYTIC FUNCTION THEORY

Def.: a holomorphic function depends on one or more complex variables:

f = f(z1, z2, . . .) (not f(z1, z
∗
1 , . . .))

restricts combination on real and imaginary part of z = x+ iy, e.g. z2 = x2 − y2 + 2ixy

f is complex differentiable in a domain ⊂ C
n

for an entire function the domain is the entire complex plane

Def.: an analytic function is locally described by a converging power series

e.g. f(z) =
∑

i=0 ciz
i for |z| < z0, z0 is the radius of convergence, may be infinite

separate real and imaginary parts

f(z) = u(x, y) + iv(x, y)

though f is a function of z, u and v are not separately functions of z

e.g. f(z) = z2 = x2 − y2 + 2ixy =⇒ u(x, y) = x2 − y2 and v(x, y) = 2xy

A. Cauchy-Riemann relations

derivative of a holomorphic function: f ′(z) = df(z)
dz = limz0→z

f(z)−f(z0)
z−z0

approaching z from different directions in the complex plane must produce identical results

recall real function: g′(x) = limh→0+
g(x+h)−g(x)

h = limh→0−
g(x+h)−g(x)

h

i) along the real axis: z0 = z + h with h ∈ R

f ′(z) = lim
h→0

f(z)− f(z + h)

−h

= lim
h→0

u(x, y) + iv(x, y)− u(x+ h, y)− iv(x+ h, y)

−h
= ux(x, y) + ivx(x, y)

where ux(x, y) =
∂u(x,y)

∂x etc.

ii) along the imaginary axis: z0 = z + ih with h ∈ R

f ′(z) = lim
h→0

f(z)− f(z + ih)

−ih

= lim
h→0

u(x, y) + iv(x, y)− u(x, y + h)− iv(x, y + h)

−ih
= −iuy(x, y) + vy(x, y)

equating i) and ii) =⇒ Cauchy-Riemann relations:

ux(x, y) = vy(x, y) and uy(x, y) = −vx(x, y)

e.g. f(z) = z2 = x2 − y2 + 2ixy has u = x2 − y2 and v = 2xy

has ux = 2x , vy = 2x , uy = −2y , vx = 2y X

interesting consequence

∂2u

∂x2
=

∂ux
∂x

=
∂vy
∂x

=
∂vx
∂y

= −∂uy
∂y

= −∂2u

∂y2

real part of an analytic function solves Laplace’s equation in two dimensions ∂2φ
∂x2 + ∂2φ

∂y2
= 0

so does the imaginary part
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B. Residue theorem

closed counter-clockwise integral in the complex plane

x0 and y0 are arbitrarily small
✲
x

✻y

✲

✻

✛

❄

(−x0,−y0) (x0,−y0)

(−x0, y0) (x0, y0)

A

B

C

D

∮

C
dz f(z) =

∮

C
[dx+ idy] [u(x, y) + iv(x, y)]

=

∫ x0

−x0

dx


u(x,−y0) + iv(x,−y0)︸ ︷︷ ︸

A

−u(x, y0)− iv(x, y0)︸ ︷︷ ︸
C




+ i

∫ y0

−y0

dy


u(x0, y) + iv(x0, y)︸ ︷︷ ︸

B

−u(−x0, y)− iv(−x0, y)︸ ︷︷ ︸
D




≈
∫ x0

−x0

dx 2y0 [−uy(x, 0)− ivy(x, 0)] + i

∫ y0

−y0

dy 2x0 [ux(0, y) + ivx(0, y)]

≈ 4x0y0 [−uy(x̃, 0)− ivy(x̃, 0) + iux(0, ỹ)− vx(0, ỹ)]

with −x0 < x̃ < x0 and −y0 < ỹ < y0 by the central value theorem of integration

take the infinitesimal limit x0 → 0 and y0 → 0, i.e. x̃ → 0 and ỹ → 0:
∮

C
dz f(z) −→ 4x0y0 [−uy(0, 0)− ivy(0, 0) + iux(0, 0)− vx(0, 0)] = 0

by the Cauchy-Riemann relations8

patch finite area by (infinitely) many infinitesimal loops

contributions from internal lines to
∮
C dz f(z) cancel

conclusion:
∮
C dz f(z) = 0 if the central value theorem can be applied

what happens for a singular structure like f(z) = a
z−z0

(
a, z0 ∈ C

)
?

notation: z0 is the pole (position) and a is the residue

let C = ∂A (boundary of an area)

8 Calculation essentially is Stokes’s theorem with dr = dxex + dyey and V = [u(x, y) + iv(x, y)] [ex + iey].
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i) z0 /∈ A =⇒ central value theorem applies =⇒
∮
C dz f(z) = 0

ii) z0 ∈ A counter-clockwise circle (fixed radius R) around pole

C : z = z0 +Reiϕ 0 ≤ ϕ < 2π

dz = iReiϕ dϕ =⇒
∮

C
dz f(z) = iRa

∫ 2π

0
dϕ

eiϕ

Reiϕ
= 2πia

independent of radius

separate pole for an arbitrary contour

gap only shown for illustration

a closed counter-clockwise contour integral that encircles a (first order)

pole yields 2πi×
(
residue of that pole

)
; clockwise contour has the negative thereof

iii) multiple poles: f(z) = a1
z−z1

+ a2
z−z2

, z1 6= z2

patch contours encircling individual poles

✲

✻

✛

❄
×
z1

×
z2 =

✲

✻

✛

❄

✲

✻

✛

❄
×
z1

×
z2

∮

C
dz f(z) = 2πi

∑

i

ai

higher order poles: f(z) = a
(z−z0)

n , with integer n ≥ 2; obviously
∮
C dz f(z) = 0 when z0 /∈ A

as above: C : z = z0 +Reiϕ

∮

C
dz f(z) = iaR

∫ 2π

0
dϕ

eiϕ

Rneinϕ
= iaR1−n

∫ 2π

0
dϕ ei(n−1)ϕ = 0 since n 6= 1

final result for counter-clockwise contour integral:
∮

C
dz f(z) = 2πi×

(
sum of residues of first order poles encircled by C

)

Calculational methods

i) f(z) has a first order pole at z = z0

a = Resz0f(z) = lim
z→z0

(z − z0)f(z)

ii) f(z) has an mth order pole at z = z0

Resz0f(z) =
1

(m− 1)!
lim
z→z0

dm−1

dzm−1
(z − z0)

mf(z)



in
te
rn
al
us
e
on
ly

40

C. Applications

extend ordinary integrals (along real axis) to closed contour integrals

& ensure that extension contributes zero

Examples

A)
∫∞
−∞

dx
x2+1

=
∫∞
−∞

dx
(x+i)(x−i) has first order poles at z0 = ±i

r

r

=

r

r

C

−

C
r

r

or

r

r

=

r

r

−
r

r

extension of integral C : z = Reiϕ with 0 ≤ ϕ ≤ π

∫

C

dz

z2 + 1
=

i

R

∫ π

0

dϕ

e2iϕ + 1/R2
−→ 0 when R −→ ∞

extension does not contribute =⇒
∫ ∞

−∞

dx

x2 + 1
=

∫

C

dz

(z + i)(z − i)
= 2πiResi

1

(z + i)(z − i)
= 2πi lim

z→i

z − i

(z + i)(z − i)
=

2πi

2i
= π

alternative extension has residue with opposite sign

but an additional factor (-1) from the contour being clockwise

B) θ(s) =
∫∞
−∞

dx
2πi

eisx

x−iǫ has a first order pole at z = iǫ

indication that the pole is an infinitesimal amount above the real axis: ǫ = 0+

alternatively: pole is bypassed in the lower half-plane

it is permissable to multiply ǫ by any positive real number (sign unchanged)

r

=

r

C1

−

C1
r

or

r

=

r

C2
−

r

C2

semi-circle extensions contribute zero when the exponential vanishes

on the semi-circles: z = Reiϕ so that eisz = eisR cosϕ e−sR sinϕ

vanishes for R → ∞ when s sinϕ > 0, C1 : sinϕ > 0, C2 : sinϕ < 0

for s > 0 we need to take C1

θ(s) = Resiǫ
eisx

x− iǫ
= e−sǫ −→ 1 because ǫ → 0+

for s < 0 we need to take C2 which has θ(s) = 0

result:
∫∞
−∞

dx
2πi

eisx

x−iǫ is a parameterization of the step function
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derivative of step function (assuming it can be pulled under the integral)

dθ(s)

ds
=

∫

dx

2π

x

x− iǫ
eisx =

1

i



















Resiǫ
x

x− iǫ
eisx = iǫe−sǫ = 0 s > 0

undetermined s = 0

0 s < 0

test function g(s) and integration bounds a < 0 < b

∫ b

a
ds g(s)

dθ(s)

ds
= [g(s)θ(s)]ba −

∫ b

a
ds

dg(s)

ds
θ(s) = g(b)−

∫ b

0
ds

dg(s)

ds
= g(0)

hence dθ(s)
ds = δ(s), the Dirac-δ function (distribution)

since the residue above is zero, we may omit the iǫ prescription and write

δ(s) =

∫

dx

2π
eisx (consistent with Fourier transform: g(x) =

∫

dk

2π

∫

dx′ g(x′)ei(x−x
′)k)

C) S(t) =
∫

dx
2π

eixt

x2−m2+iǫ
has first order poles at x = ±

√
m2 − iǫ ≈ ±

(

m− iǫ
2m

)

→ ±m∓ iǫ

✲r
r

= ✲

✛

r

r
θ(t) + ✲

✛

r

r θ(−t)

S(t) = iθ(t)Res−m

eixt

x2 −m2
− iθ(−t)Resm

eixt

x2 −m2
=

−i

2m

[

θ(t)e−imt + θ(−t)eimt
]

=
−i

2m
e−im|t|

consider
(

−
d2

dt2
−m2

)

S(t) =
1

2

d

dt

[

e−im|t|sgn(t)
]

+
im

2
e−im|t| =

1

2
e−im|t| d

dt
[θ(t)− θ(−t)] = δ(t)

on the other hand
(

−
d2

dt2
−m2

)

S(t)

∫

dx

2π

eixt

x2 −m2 + iǫ
=

∫

dx

2π

x2 −m2

x2 −m2 + iǫ
eixt −→

∫

dx

2π
eixt = δ(t)

physics application: time-ordered product, Feynman propagator

branch cut singularities (ǫ = 0+ , x > 0)

ln (−x+ iǫ)− ln (−x− iǫ) = 2πi ln(x)
√
z = eln(

√
z) = e

1

2
ln(z)

√
−x+ iǫ−

√
−x− iǫ =

√
x
(√

eiπ −
√
e−iπ

)

=
√
x
(

eiπ/2 − e−iπ/2
)

=
√
x (i− (−i)) = 2πi

√
x

can be used to express an integral along real axis as

an integral along the imaginary axis

e.g.:
∫∞

0 dx
cos(x)
√
x2+1

= 1
2

∫∞

−∞
dx eix√

x2+1
=

∫∞

1 dx e−x

√
x2−1

✲

✻


