III. COMPLEX NUMBERS

A. Root of Negative One

Def.: imaginary unit i with $\mathrm{i}^{2}=-1$ as symbolic solution to $x^{2}=-1$
generalizes to complex numbers $\mathbb{C}: \quad z=a+\mathrm{i} b, \quad a, b \in \mathbb{R}$
with $\mathrm{i} b$ understood as an (ordinary) product, hence $x^{2}=-1$ implies $x= \pm \mathrm{i}$ $a=\operatorname{Re}(z)$: real part; $b=\operatorname{Im}(z)$: imaginary part $\longrightarrow \mathbb{C} \sim \mathbb{R} \times \mathbb{R}$
complex numbers are indeed real objects (nothing imaginary out of this world) we will observe that no further extension is needed to, e.g. solve $\left(x^{2}\right)^{2}=-1$

B. Calculational Methods

addition of complex numbers, z_{1}, z_{2}

$$
\begin{aligned}
z_{1}+z_{2} & =\left(a_{1}+\mathrm{i} b_{1}\right)+\left(a_{2}+\mathrm{i} b_{2}\right) \\
& =\left(a_{1}+a_{2}\right)+\mathrm{i}\left(b_{1}+b_{2}\right)=a+\mathrm{i} b \in \mathbb{C}
\end{aligned}
$$

just add real and imaginary parts separately similar to vector addition when pictured in a plane with real and imaginary parts

neutral element: $0: \quad a_{2}=0, \quad b_{2}=0 \quad \longrightarrow \quad z_{1}+z_{2}=z_{1}$
inverse element: $a_{2}=-a_{1}, \quad b_{2}=-b_{1} \quad \longrightarrow \quad z_{1}+z_{2}=0$ (neutral element)
multiplication of complex numbers, z_{1}, z_{2}
treat $\mathrm{i} b$ like the product $\mathrm{i} \cdot b$ with $\mathrm{i}^{2}=-1$

$$
\begin{aligned}
& z_{1} z_{2}=\left(a_{1}+\mathrm{i} b_{1}\right)\left(a_{2}+\mathrm{i} b_{2}\right)=a_{1} a_{2}+\mathrm{i} a_{1} b_{2}+\mathrm{i} b_{1} a_{2}+\mathrm{i}^{2} b_{1} b_{2}=a_{1} a_{2}-b_{1} b_{2}+\mathrm{i}\left(a_{1} b_{2}+a_{2} b_{1}\right) \\
& \Longrightarrow \operatorname{Re}\left(z_{1} z_{2}\right)=a_{1} a_{2}-b_{1} b_{2}, \quad \operatorname{lm}\left(z_{1} z_{2}\right)=a_{1} b_{2}+a_{2} b_{1} \quad \text { and } \quad z_{1} z_{2} \in \mathbb{C}
\end{aligned}
$$

in particular $\mathrm{i} \cdot \mathrm{i}$ has $a_{1,2}=0$ and $b_{1,2}=1$ so that $\operatorname{Re}(\mathrm{i} \cdot \mathrm{i})=-1$ and $\operatorname{Im}(\mathrm{i} \cdot \mathrm{i})=0$
neutral element: $1: \quad a_{2}=1, \quad b_{2}=0 \quad \longrightarrow \quad z_{1} z_{2}=a_{1}+\mathrm{i} b_{1}=z_{1}$
inverse element: $z_{1} z_{2}=1$ except for $z_{1}=0 \quad$ (distributivity requires $z \cdot 0=0 \neq 1$)
(recall distributivity: $z z_{1}-z z_{2}=z\left(z_{1}-z_{2}\right)$ both must be zero when $z_{1}=z_{2}$)
two conditions: $a_{1} a_{2}-b_{1} b_{2}=1$ and $a_{1} b_{2}+a_{2} b_{1}=0, a_{1}$ and b_{1} are not both zero
(i) $a_{1} \neq 0$ but b_{1} can be any real number $\Longrightarrow b_{2}=-\frac{a_{2}}{a_{1}} b_{1}$
$\Longrightarrow a_{1} a_{2}+\frac{a_{2}}{a_{1}} b_{1}^{2}=1 \quad \Longrightarrow \quad a_{2}=\frac{a_{1}}{a_{1}^{2}+b_{1}^{2}} \quad$ and $\quad b_{2}=\frac{-b_{1}}{a_{1}^{2}+b_{1}^{2}}$
(ii) $b_{1} \neq 0$ but a_{1} can be any real number $\Longrightarrow a_{2}=-\frac{b_{2}}{b_{1}} a_{1}$ $\Longrightarrow \quad-a_{1}^{2} \frac{b_{2}}{b_{1}}-b_{1} b_{2}=1 \quad \Longrightarrow \quad b_{2}=-\frac{b_{1}}{a_{1}^{2}+b_{1}^{2}} \quad$ and $\quad a_{2}=\frac{a_{1}}{a_{1}^{2}+b_{1}^{2}}$
both cases:

$$
\left(a_{1}+\mathrm{i} b_{1}\right)\left(\frac{a_{1}}{a_{1}^{2}+b_{1}^{2}}-\mathrm{i} \frac{b_{1}}{a_{1}^{2}+b_{1}^{2}}\right)=1
$$

mathematical language: $\quad\{\mathbb{C}=\mathbb{R} \times \mathbb{R}, "+", " \cdot "\} \quad$ is a field

C. Polar Decomposition

graphical representation of a complex number $z=a+\mathrm{i} b$ in a plane:

but: $\quad(i) \quad z=1+\mathrm{i} \quad$ has $\quad \frac{b}{a}=1 \quad$ and $\quad \varphi=\frac{\pi}{4}$
(ii) $z=-1-\mathrm{i}$ has $\frac{b}{a}=1$ and $\varphi=\frac{\pi}{4}$ (should be $\frac{5 \pi}{4}$ or $-\frac{3 \pi}{4}$)
further specification: $\quad b>0: \varphi \in[0, \pi]$ and $b<0: \varphi \in[\pi, 2 \pi] \quad$ or $\quad[-\pi, 0]$

$$
b=0: \quad a>0 \quad \text { has } \quad \varphi=0 \quad \text { while } \quad a<0 \quad \text { has } \quad \varphi= \pm \pi
$$

Def. complex conjugation: $\quad z \longrightarrow z^{*}$ (or \bar{z}) consider

$$
z z^{*}=(a+\mathrm{i} b)(a-\mathrm{i} b)=a^{2}+b^{2}=\rho^{2}=|z|^{2} \quad \text { is real }
$$

and

$$
\frac{1}{z}=\frac{z^{*}}{z z^{*}}=\frac{z^{*}}{|z|^{2}}=\frac{a-\mathrm{i} b}{a^{2}+b^{2}} \quad \checkmark \quad \text { straightforward: } \quad\left(z_{1} z_{2}\right)^{*}=z_{1}^{*} z_{2}^{*}
$$

quadratic equation: $z^{2}=-1=\mathrm{i}^{2} \quad \Longrightarrow \quad z_{1,2}= \pm \mathrm{i}$
generally: $z^{2}+p z+q z=0 \quad$ (take p and q real): $\quad\left(z+\frac{p}{2}\right)^{2}=\left(\frac{p}{2}\right)^{2}-q$
(i) $\left(\frac{p}{2}\right)^{2} \geq q$: proceed as in \mathbb{R}
(ii) $\quad\left(\frac{p}{2}\right)^{2}<q: \quad\left(\frac{p}{2}\right)^{2}-q=-\left|q-\left(\frac{p}{2}\right)^{2}\right|=\mathrm{i}^{2}\left|q-\left(\frac{p}{2}\right)^{2}\right| \quad z_{1,2}=-\frac{p}{2} \pm \mathrm{i} \sqrt{\left|q-\left(\frac{p}{2}\right)^{2}\right|}$ works as if $\mathrm{i}=\sqrt{-1}$ and $\sqrt{\left(\frac{p}{2}\right)^{2}-q}=\sqrt{-1} \sqrt{\left|\left(\frac{p}{2}\right)^{2}-q\right|}$ by accident because $p-q$ formula contains both signs
problems with the square root and complex numbers

- a and b real and positive: $\sqrt{a b}=\sqrt{a} \sqrt{b}$
does not generalize: $1=\sqrt{1}=\sqrt{(-1)(-1)}=\sqrt{-1} \sqrt{-1}=\mathrm{i}^{2}=-1 \quad$?
- mathematica, for example: $\sqrt{-1+\mathrm{i} \epsilon}=\mathrm{i}$ while $\sqrt{-1-\mathrm{i} \epsilon}=-\mathrm{i}$ for $\epsilon \longrightarrow 0^{+}$
- $\sqrt[n]{x}=x^{\frac{1}{n}} \quad$ related to $\quad y=x^{\frac{1}{n}} \quad \Longrightarrow \quad \ln (y)=\frac{1}{n} \ln (x)$
need fractional power (or logarithm) of complex numbers
key to these questions: Euler formula for exponential function of imaginary number

$$
\mathrm{e}^{\mathrm{i} x}=\cos (x)+\mathrm{i} \sin (x) \quad x \in \mathbb{R}
$$

(compare with $\mathrm{e}^{x}=\cosh (x)+\sinh (x)$)
derivation/motivation

- any complex number has a polar decomposition: $\quad \mathrm{e}^{\mathrm{i} x}=r[\cos (\theta)+\mathrm{i} \sin (\theta)]$
- derivative of lhs (treat i just as a constant factor; cf. rules above)

$$
\frac{d}{d x} \mathrm{e}^{\mathrm{i} x}=\mathrm{e}^{\mathrm{i} x} \frac{d}{d x}(\mathrm{i} x)=\mathrm{i} \mathrm{e}^{\mathrm{i} x}=r[\mathrm{i} \cos (\theta)-\sin (\theta)]
$$

- derivative of rhs

$$
\frac{d r}{d x}[\cos (\theta)+\mathrm{i} \sin (\theta)]+r[-\sin (\theta)+\mathrm{i} \cos (\theta)] \frac{d \theta}{d x}
$$

- comparison: $\frac{d r}{d x}=0$ and $\frac{d \theta}{d x}=1 \Longrightarrow r=c_{1}$ and $\theta=x+c_{2} ; \quad c_{1,2} \in \mathbb{R}$

$$
x=0: \quad 1=c_{1}\left[\cos \left(c_{2}\right)+\mathrm{i} \sin \left(c_{2}\right)\right] \quad \Longrightarrow \quad c_{1}=1 \quad \text { and } \quad c_{2}=0
$$

(equations for complex numbers relate to two real equations, one for real and imaginary parts each) alternative derivation: Taylor series reformulation of polar decomposition:

$$
z=\rho[\cos (\varphi)+\mathrm{i} \sin (\varphi)]=\rho \mathrm{e}^{\mathrm{i} \varphi}
$$

- logarithm: $\ln (z)=\ln (\rho)+\mathrm{i} \varphi$ is well defined complex number for $\rho>0$ (particular case $\rho=0$ is singular just as it is for real numbers)
logarithm is not unique: $\varphi, \varphi+2 \pi, \varphi+4 \pi, \ldots$ have same z but different $\ln (z)$!
- roots and/or inverse powers: $z=\rho \mathrm{e}^{\mathrm{i}(\varphi+2 \pi k)}, \quad k=0,1,2, \ldots$

$$
z^{\frac{1}{n}}=\left[\rho \mathrm{e}^{\mathrm{i}(\varphi+2 \pi k)}\right]^{\frac{1}{n}}=\sqrt[n]{\rho} \mathrm{e}^{\mathrm{i} \frac{\varphi}{n}} \mathrm{e}^{2 \pi \mathrm{i} \frac{k}{n}}
$$

different results for $k=0,1, \ldots, n-1 \quad \Longrightarrow \quad n$ solutions to $z^{n}=c \quad(\neq 0)$

$$
\text { (} k=n \text { corresponds to } k=0, k=n+1 \text { to } k=1, \text { etc. })
$$

example: $z^{3}=1, \quad z=1 \quad$ is trivial

$$
\begin{aligned}
1= & \mathrm{e}^{\mathrm{i} 0}, \mathrm{e}^{2 \pi \mathrm{i}}, \mathrm{e}^{4 \pi \mathrm{i}} \\
& \longrightarrow \quad \mathrm{e}^{\mathrm{i} 0 / 3}, \mathrm{e}^{2 \pi \mathrm{i} / 3}, \mathrm{e}^{4 \pi \mathrm{i} / 3} \\
& =1,-\frac{1}{2}(1-\sqrt{3} \mathrm{i}),-\frac{1}{2}(1+\sqrt{3} \mathrm{i})
\end{aligned}
$$

check : $\left[-\frac{1}{2}(1-\sqrt{3} i)\right]^{3}=-\frac{1}{8}(1-\sqrt{3} i)^{2}(1-\sqrt{3} i)=-\frac{1}{8}(1-3-2 \sqrt{3} i)(1-\sqrt{3} i)$

$$
=\frac{1}{4}(1+\sqrt{3} \mathrm{i})(1-\sqrt{3} \mathrm{i})=\frac{1}{4}(1+3)=1
$$

- root of -1 (convention with $\varphi \in[-\pi, \pi])$

$$
\begin{aligned}
& -1+\mathrm{i} \epsilon=1 \mathrm{e}^{\mathrm{i} \pi} \quad \Longrightarrow \quad \sqrt{-1+\mathrm{i} \epsilon}=\mathrm{e}^{\mathrm{i} \pi / 2}=\mathrm{i} \\
& -1-\mathrm{i} \epsilon=1 \mathrm{e}^{-\mathrm{i} \pi} \quad \Longrightarrow \quad \sqrt{-1+\mathrm{i} \epsilon}=\mathrm{e}^{-\mathrm{i} \pi / 2}=-\mathrm{i}
\end{aligned}
$$

discontinuity cannot be avoided:
for $\varphi \in[0,2 \pi]$ it occurs along the positive real axis with $\sqrt{1}$ jumping between +1 and -1
addition theorem

$$
\begin{aligned}
\mathrm{e}^{\mathrm{i} \varphi_{1}} \mathrm{e}^{\mathrm{i} \varphi_{2}} & =\left[\cos \left(\varphi_{1}\right)+\mathrm{i} \sin \left(\varphi_{1}\right)\right]\left[\cos \left(\varphi_{2}\right)+\mathrm{i} \sin \left(\varphi_{2}\right)\right] \\
& =\cos \left(\varphi_{1}\right) \cos \left(\varphi_{2}\right)-\sin \left(\varphi_{1}\right) \sin \left(\varphi_{2}\right)+\mathrm{i}\left[\sin \left(\varphi_{1}\right) \cos \left(\varphi_{2}\right)+\cos \left(\varphi_{1}\right) \sin \left(\varphi_{2}\right)\right] \\
& =\cos \left(\varphi_{1}+\varphi_{2}\right)+\mathrm{i} \sin \left(\varphi_{1}+\varphi_{2}\right)=\mathrm{e}^{\mathrm{i}\left(\varphi_{1}+\varphi_{2}\right)} \quad \text { phases add in the product }
\end{aligned}
$$

$\underline{\text { analytic continuation, examples with } x \in \mathbb{R}}$

$$
\begin{aligned}
& \cosh (\mathrm{i} x)=\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} x}+\mathrm{e}^{-\mathrm{i} x}\right)=\cos (x) \\
& \sinh (\mathrm{i} x)=\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} x}-\mathrm{e}^{-\mathrm{i} x}\right)=\frac{1}{2}(\cos (x)+\mathrm{i} \sin (x)-\cos (x)+\mathrm{i} \sin (x))=\mathrm{i} \sin (x)
\end{aligned}
$$

IV. INTRODUCTION TO ANALYTIC FUNCTION THEORY

Def.: a holomorphic function depends on one or more complex variables:

$$
f=f\left(z_{1}, z_{2}, \ldots\right) \quad\left(\text { not } \quad f\left(z_{1}, z_{1}^{*}, \ldots\right)\right)
$$

restricts combination on real and imaginary part of $z=x+\mathrm{i} y, \quad$ e.g. $z^{2}=x^{2}-y^{2}+2 \mathrm{i} x y$ f is complex differentiable in a domain $\subset \mathbb{C}^{n}$
for an entire function the domain is the entire complex plane
Def.: an analytic function is locally described by a converging power series
e.g. $f(z)=\sum_{i=0} c_{i} z^{i} \quad$ for $\quad|z|<z_{0}, \quad z_{0}$ is the radius of convergence, may be infinite separate real and imaginary parts

$$
f(z)=u(x, y)+\mathrm{i} v(x, y)
$$

though f is a function of z, u and v are not separately functions of z e.g. $f(z)=z^{2}=x^{2}-y^{2}+2 \mathrm{i} x y \quad \Longrightarrow \quad u(x, y)=x^{2}-y^{2} \quad$ and $\quad v(x, y)=2 x y$

A. Cauchy-Riemann relations

derivative of a holomorphic function: $f^{\prime}(z)=\frac{d f(z)}{d z}=\lim _{z_{0} \rightarrow z} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ approaching z from different directions in the complex plane must produce identical results recall real function: $g^{\prime}(x)=\lim _{h \rightarrow 0^{+}} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0^{-}} \frac{g(x+h)-g(x)}{h}$
i) along the real axis: $z_{0}=z+h$ with $h \in \mathbb{R}$

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{h \rightarrow 0} \frac{f(z)-f(z+h)}{-h} \\
& =\lim _{h \rightarrow 0} \frac{u(x, y)+\mathrm{i} v(x, y)-u(x+h, y)-\mathrm{i} v(x+h, y)}{-h}=u_{x}(x, y)+\mathrm{i} v_{x}(x, y)
\end{aligned}
$$

where $u_{x}(x, y)=\frac{\partial u(x, y)}{\partial x}$ etc.
ii) along the imaginary axis: $z_{0}=z+\mathrm{i} h$ with $h \in \mathbb{R}$

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{h \rightarrow 0} \frac{f(z)-f(z+\mathrm{i} h)}{-\mathrm{i} h} \\
& =\lim _{h \rightarrow 0} \frac{u(x, y)+\mathrm{i} v(x, y)-u(x, y+h)-\mathrm{i} v(x, y+h)}{-\mathrm{i} h}=-\mathrm{i} u_{y}(x, y)+v_{y}(x, y)
\end{aligned}
$$

equating i) and ii) \Longrightarrow Cauchy-Riemann relations:

$$
u_{x}(x, y)=v_{y}(x, y) \quad \text { and } \quad u_{y}(x, y)=-v_{x}(x, y)
$$

e.g. $f(z)=z^{2}=x^{2}-y^{2}+2 \mathrm{i} x y$ has $u=x^{2}-y^{2} \quad$ and $\quad v=2 x y$

$$
\text { has } \quad u_{x}=2 x, v_{y}=2 x, u_{y}=-2 y, v_{x}=2 y \quad \checkmark
$$

interesting consequence

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u_{x}}{\partial x}=\frac{\partial v_{y}}{\partial x}=\frac{\partial v_{x}}{\partial y}=-\frac{\partial u_{y}}{\partial y}=-\frac{\partial^{2} u}{\partial y^{2}}
$$

real part of an analytic function solves Laplace's equation in two dimensions $\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0$ so does the imaginary part

B. Residue theorem

closed counter-clockwise integral in the complex plane x_{0} and y_{0} are arbitrarily small

$$
\begin{aligned}
\oint_{\mathcal{C}} d z f(z)= & \oint_{\mathcal{C}}[d x+\mathrm{i} d y][u(x, y)+\mathrm{i} v(x, y)] \\
= & \int_{-x_{0}}^{x_{0}} d x[\underbrace{u\left(x,-y_{0}\right)+\mathrm{i} v\left(x,-y_{0}\right)}_{A} \underbrace{-u\left(x, y_{0}\right)-\mathrm{i} v\left(x, y_{0}\right)}_{C}] \\
& +\mathrm{i} \int_{-y_{0}}^{y_{0}} d y[\underbrace{u\left(x_{0}, y\right)+\mathrm{i} v\left(x_{0}, y\right)}_{B} \underbrace{-u\left(-x_{0}, y\right)-\mathrm{i} v\left(-x_{0}, y\right)}_{D}] \\
\approx & \int_{-x_{0}}^{x_{0}} d x 2 y_{0}\left[-u_{y}(x, 0)-\mathrm{i} v_{y}(x, 0)\right]+\mathrm{i} \int_{-y_{0}}^{y_{0}} d y 2 x_{0}\left[u_{x}(0, y)+\mathrm{i} v_{x}(0, y)\right] \\
\approx & 4 x_{0} y_{0}\left[-u_{y}(\widetilde{x}, 0)-\mathrm{i} v_{y}(\widetilde{x}, 0)+\mathrm{i} u_{x}(0, \widetilde{y})-v_{x}(0, \widetilde{y})\right]
\end{aligned}
$$

with $-x_{0}<\widetilde{x}<x_{0}$ and $-y_{0}<\widetilde{y}<y_{0}$ by the central value theorem of integration take the infinitesimal limit $x_{0} \rightarrow 0$ and $y_{0} \rightarrow 0$, i.e. $\widetilde{x} \rightarrow 0$ and $\widetilde{y} \rightarrow 0$:

$$
\oint_{\mathcal{C}} d z f(z) \longrightarrow 4 x_{0} y_{0}\left[-u_{y}(0,0)-\mathrm{i} v_{y}(0,0)+\mathrm{i} u_{x}(0,0)-v_{x}(0,0)\right]=0
$$

by the Cauchy-Riemann relations ${ }^{8}$
patch finite area by (infinitely) many infinitesimal loops

contributions from internal lines to $\oint_{\mathcal{C}} d z f(z)$ cancel conclusion: $\oint_{\mathcal{C}} d z f(z)=0$ if the central value theorem can be applied what happens for a singular structure like $f(z)=\frac{a}{z-z_{0}} \quad\left(a, z_{0} \in \mathbb{C}\right)$? notation: z_{0} is the pole (position) and a is the residue let $\mathcal{C}=\partial \mathcal{A}$ (boundary of an area)

[^0]i) $z_{0} \notin \mathcal{A} \quad \Longrightarrow \quad$ central value theorem applies $\quad \Longrightarrow \quad \oint_{\mathcal{C}} d z f(z)=0$
ii) $z_{0} \in \mathcal{A}$ counter-clockwise circle (fixed radius R) around pole
\[

$$
\begin{aligned}
& \mathcal{C}: \quad z=z_{0}+R \mathrm{e}^{\mathrm{i} \varphi} \quad 0 \leq \varphi<2 \pi \\
& d z=\mathrm{i} R \mathrm{e}^{\mathrm{i} \varphi} d \varphi \quad \Longrightarrow \quad \oint_{\mathcal{C}} d z f(z)=\mathrm{i} R a \int_{0}^{2 \pi} d \varphi \frac{\mathrm{e}^{\mathrm{i} \varphi}}{R \mathrm{e}^{\mathrm{i} \varphi}}=2 \pi \mathrm{i} a
\end{aligned}
$$
\]

independent of radius separate pole for an arbitrary contour

a closed counter-clockwise contour integral that encircles a (first order) pole yields $2 \pi \mathrm{i} \times$ (residue of that pole); clockwise contour has the negative thereof
iii) multiple poles: $f(z)=\frac{a_{1}}{z-z_{1}}+\frac{a_{2}}{z-z_{2}}, \quad z_{1} \neq z_{2}$
patch contours encircling individual poles

$$
\oint_{\mathcal{C}} d z f(z)=2 \pi \mathrm{i} \sum_{i} a_{i}
$$

higher order poles: $f(z)=\frac{a}{\left(z-z_{0}\right)^{n}}$, with integer $n \geq 2$; obviously $\oint_{\mathcal{C}} d z f(z)=0$ when $z_{0} \notin \mathcal{A}$ as above: $\mathcal{C}: \quad z=z_{0}+R \mathrm{e}^{\mathrm{i} \varphi}$

$$
\oint_{\mathcal{C}} d z f(z)=\mathrm{i} a R \int_{0}^{2 \pi} d \varphi \frac{\mathrm{e}^{\mathrm{i} \varphi}}{R^{n} \mathrm{e}^{\mathrm{i} n \varphi}}=\mathrm{i} a R^{1-n} \int_{0}^{2 \pi} d \varphi \mathrm{e}^{\mathrm{i}(n-1) \varphi}=0 \quad \text { since } \quad n \neq 1
$$

final result for counter-clockwise contour integral:

$$
\oint_{\mathcal{C}} d z f(z)=2 \pi \mathrm{i} \times(\text { sum of residues of first order poles encircled by } \mathcal{C})
$$

Calculational methods

i) $f(z)$ has a first order pole at $z=z_{0}$

$$
a=\operatorname{Res}_{z_{0}} f(z)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

ii) $f(z)$ has an $m^{\text {th }}$ order pole at $z=z_{0}$

$$
\operatorname{Res}_{z_{0}} f(z)=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{m-1}}{d z^{m-1}}\left(z-z_{0}\right)^{m} f(z)
$$

C. Applications

extend ordinary integrals (along real axis) to closed contour integrals
\& ensure that extension contributes zero

Examples

A) $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+1}=\int_{-\infty}^{\infty} \frac{d x}{(x+\mathrm{i})(x-\mathrm{i})}$ has first order poles at $z_{0}= \pm \mathrm{i}$

extension of integral $\overline{\mathcal{C}}: \quad z=R \mathrm{e}^{\mathrm{i} \varphi}$ with $0 \leq \varphi \leq \pi$

$$
\int_{\overline{\mathcal{C}}} \frac{d z}{z^{2}+1}=\frac{\mathrm{i}}{R} \int_{0}^{\pi} \frac{d \varphi}{\mathrm{e}^{2 \mathrm{i} \varphi}+1 / R^{2}} \quad \longrightarrow \quad 0 \quad \text { when } \quad R \longrightarrow \quad \infty
$$

extension does not contribute \Longrightarrow

$$
\int_{-\infty}^{\infty} \frac{d x}{x^{2}+1}=\int_{\mathcal{C}} \frac{d z}{(z+\mathrm{i})(z-\mathrm{i})}=2 \pi \operatorname{Res}_{\mathrm{i}} \frac{1}{(z+\mathrm{i})(z-\mathrm{i})}=2 \pi \mathrm{i}_{z \rightarrow \mathrm{i}} \frac{z-\mathrm{i}}{(z+\mathrm{i})(z-\mathrm{i})}=\frac{2 \pi \mathrm{i}}{2 \mathrm{i}}=\pi
$$

alternative extension has residue with opposite sign
but an additional factor (-1) from the contour being clockwise
B) $\theta(s)=\int_{-\infty}^{\infty} \frac{d x}{2 \pi \mathrm{i}} \frac{\mathrm{e}^{\mathrm{i} s x}}{x-\mathrm{i} \epsilon}$ has a first order pole at $z=\mathrm{i} \epsilon$
indication that the pole is an infinitesimal amount above the real axis: $\epsilon=0^{+}$
alternatively: pole is bypassed in the lower half-plane
it is permissable to multiply ϵ by any positive real number (sign unchanged)

semi-circle extensions contribute zero when the exponential vanishes
on the semi-circles: $z=R \mathrm{e}^{\mathrm{i} \varphi}$ so that $\mathrm{e}^{\mathrm{i} s z}=\mathrm{e}^{\mathrm{i} s R \cos \varphi} \mathrm{e}^{-s R \sin \varphi}$
vanishes for $R \rightarrow \infty$ when $s \sin \varphi>0, \quad \overline{\mathcal{C}}_{1}: \sin \varphi>0, \quad \overline{\mathcal{C}}_{2}: \sin \varphi<0$
for $s>0$ we need to take \mathcal{C}_{1}

$$
\theta(s)=\operatorname{Res}_{\mathrm{i} \epsilon} \frac{\mathrm{e}^{\mathrm{i} s x}}{x-\mathrm{i} \epsilon}=\mathrm{e}^{-s \epsilon} \longrightarrow 1 \quad \text { because } \quad \epsilon \rightarrow 0^{+}
$$

for $s<0$ we need to take \mathcal{C}_{2} which has $\theta(s)=0$
result: $\quad \int_{-\infty}^{\infty} \frac{d x}{2 \pi \mathrm{i}} \frac{\mathrm{e}^{\mathrm{i} s x}}{\sin \epsilon}$ is a parameterization of the step function
derivative of step function (assuming it can be pulled under the integral)

$$
\frac{d \theta(s)}{d s}=\int \frac{d x}{2 \pi} \frac{x}{x-\mathrm{i} \epsilon} \mathrm{e}^{\mathrm{i} s x}=\frac{1}{\mathrm{i}} \begin{cases}\operatorname{Res}_{\mathrm{i} \epsilon} \frac{x}{x-\mathrm{i} \epsilon} \mathrm{e}^{\mathrm{i} s x}=\mathrm{i} \epsilon \mathrm{e}^{-s \epsilon}=0 & s>0 \\ \text { undetermined } & s=0 \\ 0 & s<0\end{cases}
$$

test function $g(s)$ and integration bounds $a<0<b$

$$
\int_{a}^{b} d s g(s) \frac{d \theta(s)}{d s}=[g(s) \theta(s)]_{a}^{b}-\int_{a}^{b} d s \frac{d g(s)}{d s} \theta(s)=g(b)-\int_{0}^{b} d s \frac{d g(s)}{d s}=g(0)
$$

hence $\frac{d \theta(s)}{d s}=\delta(s)$, the Dirac- δ function (distribution)
since the residue above is zero, we may omit the i ϵ prescription and write

$$
\delta(s)=\int \frac{d x}{2 \pi} \mathrm{e}^{\mathrm{i} s x} \quad\left(\text { consistent with Fourier transform: } \quad g(x)=\int \frac{d k}{2 \pi} \int d x^{\prime} g\left(x^{\prime}\right) \mathrm{e}^{\mathrm{i}\left(x-x^{\prime}\right) k}\right)
$$

C) $S(t)=\int \frac{d x}{2 \pi} \frac{\mathrm{e}^{\mathrm{i} x t}}{x^{2}-m^{2}+\mathrm{i} \epsilon}$ has first order poles at $x= \pm \sqrt{m^{2}-\mathrm{i} \epsilon} \approx \pm\left(m-\frac{\mathrm{i} \epsilon}{2 m}\right) \rightarrow \pm m \mp \mathrm{i} \epsilon$

consider

$$
\left(-\frac{d^{2}}{d t^{2}}-m^{2}\right) S(t)=\frac{1}{2} \frac{d}{d t}\left[\mathrm{e}^{-\mathrm{i} m|t|} \operatorname{sgn}(t)\right]+\frac{\mathrm{i} m}{2} \mathrm{e}^{-\mathrm{i} m|t|}=\frac{1}{2} \mathrm{e}^{-\mathrm{i} m|t|} \frac{d}{d t}[\theta(t)-\theta(-t)]=\delta(t)
$$

on the other hand

$$
\left(-\frac{d^{2}}{d t^{2}}-m^{2}\right) S(t) \int \frac{d x}{2 \pi} \frac{\mathrm{e}^{\mathrm{i} x t}}{x^{2}-m^{2}+\mathrm{i} \epsilon}=\int \frac{d x}{2 \pi} \frac{x^{2}-m^{2}}{x^{2}-m^{2}+\mathrm{i} \epsilon} \mathrm{e}^{\mathrm{i} x t} \quad \longrightarrow \quad \int \frac{d x}{2 \pi} \mathrm{e}^{\mathrm{i} x t}=\delta(t)
$$

physics application: time-ordered product, Feynman propagator
branch cut singularities $\left(\epsilon=0^{+}, \quad x>0\right)$

$$
\begin{aligned}
& \ln (-x+\mathrm{i} \epsilon)-\ln (-x-\mathrm{i} \epsilon)=2 \pi \mathrm{i} \ln (x) \\
& \sqrt{z}=\mathrm{e}^{\ln (\sqrt{z})}=\mathrm{e}^{\frac{1}{2} \ln (z)} \\
& \sqrt{-x+\mathrm{i} \epsilon}-\sqrt{-x-\mathrm{i} \epsilon}=\sqrt{x}\left(\sqrt{\mathrm{e}^{\mathrm{i} \pi}}-\sqrt{\mathrm{e}^{-\mathrm{i} \pi}}\right) \\
& =\sqrt{x}\left(\mathrm{e}^{\mathrm{i} \pi / 2}-\mathrm{e}^{-\mathrm{i} \pi / 2}\right)=\sqrt{x}(\mathrm{i}-(-\mathrm{i}))=2 \pi \mathrm{i} \sqrt{x}
\end{aligned}
$$

can be used to express an integral along real axis as an integral along the imaginary axis
e.g.: $\quad \int_{0}^{\infty} d x \frac{\cos (x)}{\sqrt{x^{2}+1}}=\frac{1}{2} \int_{-\infty}^{\infty} d x \frac{\mathrm{e}^{\mathrm{i} x}}{\sqrt{x^{2}+1}}=\int_{1}^{\infty} d x \frac{\mathrm{e}^{-x}}{\sqrt{x^{2}-1}}$

[^0]: ${ }^{8}$ Calculation essentially is Stokes's theorem with $d \boldsymbol{r}=d x \boldsymbol{e}_{x}+d y \boldsymbol{e}_{y}$ and $\boldsymbol{V}=[u(x, y)+\mathrm{i} v(x, y)]\left[\boldsymbol{e}_{x}+\mathrm{i} \boldsymbol{e}_{y}\right]$.

